The Toda molecule equation and the $\varepsilon$-algorithm
نویسندگان
چکیده
منابع مشابه
The Toda molecule equation and the epsilon-algorithm
One of the well-known convergence acceleration methods, the ε-algorithm is investigated from the viewpoint of the Toda molecule equation. It is shown that the error caused by the algorithm is evaluated by means of solutions for the equation. The acceleration algorithm based on the discrete Toda molecule equation is also presented. Discrete integrable systems play important roles in the field of...
متن کاملThe Toda Molecule Equation and the Ε-algorithm
One of the well-known convergence acceleration methods, the ε-algorithm is investigated from the viewpoint of the Toda molecule equation. It is shown that the error caused by the algorithm is evaluated by means of solutions for the equation. The acceleration algorithm based on the discrete Toda molecule equation is also presented. Discrete integrable systems play important roles in the field of...
متن کاملq-Discrete Toda Molecule Equation
A q-discrete version of the two-dimensional Toda molecule equation is proposed through the direct method. Its solution, Bäcklund transformation and Lax pair are discussed. The reduction to the q-discrete cylindrical Toda molecule equation is also discussed. 1 On leave from Department of Applied Mathematics, Faculty of Engineering, Hiroshima University. 1
متن کاملCombined Wronskian solutions to the 2D Toda molecule equation
By combining two pieces of bi-directional Wronskian solutions, molecule solutions in Wronskian form are presented for the finite, semi-infinite and infinite bilinear 2D Toda molecule equations. In the cases of finite and semi-infinite lattices, separated-variable boundary conditions are imposed. The Jacobi identities for determinants are the key tool employed in the solution formulations.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1998
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-98-00987-9